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Abstract
To classify the classical field theories with W -symmetry one has to classify the
symplectic leaves of the corresponding W -algebra, which are the intersection
of the defining constraint and the coadjoint orbit of the affine Lie algebra if
the W -algebra in question is obtained by reducing a Wess–Zumino–Novikov–
Witten (WZNW) model. The fields that survive the reduction will obey
nonlinear Poisson bracket (or commutator) relations in general. For example,
the Toda models are well known theories which possess such a nonlinear W -
symmetry and many features of these models can only be understood if one
investigates the reduction procedure. In this paper we analyse the SL(n,R)

case from which the so-called Wn-algebras can be obtained. One advantage
of the reduction viewpoint is that it gives a constructive way to classify the
symplectic leaves of the W -algebra—for the n = 2 case corresponding to the
coadjoint orbits of the Virasoro algebra and for the n = 3 case which gives
rise to the Zamolodchikov algebra. Our method, in principle, is capable of
constructing explicit representatives on each leaf. Another attractive feature of
this approach is the fact that the global nature of the W -transformations can
be explicitly described. The reduction method also enables one to determine
the classical highest-weight (HW) states which are the stable minima of the
energy on a W -leaf. These are important as only to those leaves can a HW
representation space of the W -algebra be associated which contains a classical
HW state.

PACS numbers: 0210, 0220S, 0240, 1125H, 1140

1. Introduction

W -algebras have attracted a great interest since their first appearance [11]. They are extensions
of the Virasoro algebra by higher spin currents in general in such a way that the Poisson bracket
or commutator of the currents give nonlinear terms

[Wi,Wj ] = Pij (W)
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where Pij (W) is a polynomial of the currents. Such extensions are relevant not only in
the classification of two-dimensional conformal field theories but also in describing various
statistical physical models, see [13].

There are various ways to obtain the so-called Wn-algebras on both quantum and
classical levels; see [24, 25] for the quantum field theoretical aspects where the degenerate
representations, the corresponding null vectors and quantum HWs were constructed for
W3 and it has already been pointed out how this algebra was related to sl(3). Later it
was shown [1, 4] that the Toda models which carry the Wn-algebras as symmetry algebras
are Hamiltonian reductions of the Wess–Zumino–Novikov–Witten (WZNW) models. The
classical interpretation of the Wn-algebras was discussed from a similar viewpoint in [29]
where the conformal Ward identities were also derived. In [26, 27] a different realization
was proposed: the classical Wn-algebras were related to certain embeddings of two-
dimensional manifolds into 2n-dimensional Kähler manifolds, which construction makes
global considerations possible and quite explicit. A link between the quantum and classical
levels was established in [28] and [2]. The classical realization was studied geometrically
in [28] where the equation of motion was originated from immersions of affine surfaces of
constant mean curvature in affine space and was shown to be the classical (c → −∞) limit
of Zamolodchikov’s null vector equation. In [2] the null vector equation was obtained as a
quantization of the classical equation of motion for W3.

Once the classical W -algebra is given—no matter where it originates from; we have seen
there are various possible approaches—one can ask about its symplectic leaves and classical
HW states. That is the subject of this paper. We follow the gauged WZNW model construction
as this approach is the most useful one for our purposes (as will become clear) but we would
like to stress that the other classical interpretations of W -algebras mentioned above are equally
good and the problems we address are independent of how the classical algebras were arrived
at.

A ‘phase space’ associated with a Poisson manifold is one of its symplectic leaves. For the
exploration of the leaves we use the well known classical result that if second-class constraints
are imposed on a Poisson manifold P resulting in a submanifold C ⊂ P (which is also Poisson
in a canonical way) then the symplectic leavesM ⊂ C ofC coincide with the symplectic leaves
S ⊂ P of P intersected by C.

In our case the Poisson manifold P , as we have Kac–Moody symmetry, is the Kac–
Moody algebra with its canonical Poisson structure coming from the Lie algebra structure. Its
symplectic leaves S are the connected components of its coadjoint orbits and the W -algebra
lives on the constraint submanifold C determined by the Toda-type constraints. This means
that the symplectic leaves of the W -algebra are nothing other then the connected components
of the intersection of the constraint and the Kac–Moody coadjoint orbits. This implies that to
classify the classical theories withW -symmetry, which is the same as classifying the symplectic
leaves of the W -algebra, one has to classify the connected components of the intersection of
the Kac–Moody coadjoint orbits and the constraint hypersurface.

Exploring the symplectic leaves in this way enables one in principle to give explicit
representatives on each W -leaf, which we carry out in the n = 2 case but which becomes
technically cumbersome for n = 3.

The issue of the classical HW state, i.e. a stable minimum of the energy, can also be handled
by the reduction as the energy functional and its first and second variation on a W -leaf will
first be considered on the Kac–Moody coadjoint orbit and then restricted to the intersection.
We determine which orbits contain a classical HW state, which indicates that these can give
rise to a HW representation space of the W -algebra.
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Yet another advantage of the reduction viewpoint is that we can implement the W -
transformations as gauge preserving Kac–Moody transformations. These were given in [1]
on the Lie algebra level but our analysis makes it possible to explicitly describe them on the
group level. These are important for understanding the global nature of W -transformations.

We have two motivations for analysing the classical geometry of W -algebras. First
consider quantization. The quantization of W -algebras initially used a free field
construction [14], then a BRST method [16] was adopted to produce their quantum
counterparts. None of the approaches above however, relied on the geometry of W -algebras
losing useful information in this way. For example, one possible quantization procedure would
be the geometric quantization of the symplectic leaves, for which it is essential to explore the
underlying geometry.

Our second motivation comes from a more mathematical context. There is a completely
different viewpoint of the classification problem which has its origin in the field of integrable
models. In this approach the classification of symplectic leaves is related to the homotopy
classes of certain non-degenerate curves on projective space or a sphere, which problem is still
unsolved in the general case [6, 9, 10]. We will try to make the relation between these two
approaches clear but do not elaborate much in this direction. Note that this formulation is close
in spirit to a third approach which addresses the problem through the second Gel’fand–Dikii
bracket [12, 15].

In section 2 we summarize the well known setting of the WZNW models concentrating
on the symmetry properties. Section 3 gives a summary of those features of the geometry
of loop groups and their central extensions which are necessary for our considerations. This
section closely follows [31]. After these rather general remarks we set the stage for the
reduction procedure in the case of the SL(n,R) WZNW model in section 4, for which the
main reference is [1]. Detailed analysis is performed for the two simplest cases. The SL(2,R)

case amounts to the classification of the coadjoint orbits of the Virasoro algebra and the well
known result is recovered [6, 17–19]. The SL(3,R) case in section 6 produces the simplest
W -algebra, the so-called Zamolodchikov algebra, and we focus mainly on the behaviour of
the energy functional on the W -leaves rather than giving explicit representatives on each of
them. We summarize, and comment on other results and open questions in section 7.

2. WZNW models

The usual action of the WZNW model on a connected, non-compact, simple Lie group is the
following:

S = k

8π

∫
�

d2x ηµν Tr(g−1∂µg)(g
−1∂νg) − k

12π

∫
B

Tr(g−1 dg)3

where k is the coupling constant, � = S1 × R is the (1 + 1)-dimensional Minkowski space, B
is a 3-manifold whose boundary is �, ηµν is the Lorentzian metric on �, and g : � −→ G

is the dynamical field. If a certain element in H 3(G) is not zero then k has to be an integer
otherwise the action, or rather the transition amplitudes, are ill defined [30].

The equations of motion in terms of the currents in light-cone coordinates are

∂−J+ = 0 ∂+J− = 0

where J+, J− : � −→ g are the Lie-algebra-valued currents,

J+ = k∂+gg
−1 J− = −kg−1∂−g

and x± = t ± x are the light-cone coordinates on �. The solutions are simply that J+ depends
on x+, J− on x− only, which means they are periodic functions of one variable. This implies
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that the solution in the language of the g field is

g(x+, x−) = g+(x+)g−(x−)

where g+ and g− are quasiperiodic-group-valued fields which means g+(x+ + 2π) = g+(x+)M

and that g−(x− − 2π) = M−1g−(x−) for some M ∈ G monodromy.
The action of an x+ dependent chiral h(x+) Kac–Moody transformation on the fields are

g 	−→ hgh(0)−1

J+ 	−→ hJ+h
−1 + k∂+hh

−1 (1)

and analogous formulae hold for J−. These chiral transformations are symmetries of the
action and we will see that these are nothing but the coadjoint action of the centrally
extended loop group, and to make the identification more transparent h(0)−1 is defined
into the transformation of g. This modification is actually a combination of the left local,
g(x+, x−) 	−→ h(x+)g(x+, x−), and the right global, g(x+, x−) 	−→ g(x+, x−)h(0)−1,
transformations which are both symmetries of the action. The conservation laws that
correspond to these symmetries coincide with the equations of motion.

From this point forward we will only deal with the ‘+’ chirality and J , g and x will mean
J+, g+ and x+. So g and J are functions of one variable; J is periodic g is quasiperiodic only.

As the J current generates the (1) transformations which turn out to be the coadjoint
action of the centrally extended loop group, the Poisson brackets of its components coincide,
of course, with the commutation relations of the Kac–Moody algebra. Let {ta} be a basis of
g, then J (x) = Ja(x)t

a and

{Ja(x), Jb(y)} = f c
abJc(x)δ(x − y) + kKabδ

′(x − y)

where δ(x) is the 2π periodic δ-function, f c
ab are the Lie algebra structural constants and Kab

is the Killing form.

3. Loop groups and their central extensions and coadjoint orbits

Let G be a connected and simple Lie group. The loop group LG, associated with G is the
group of smooth S1 −→ G mappings with pointwise multiplication [31]. The following
observation is important: if G is not simply connected then LG is not connected as the
connected components of LG are labelled by the fundamental group of G.

Let us parametrize the circle with x ranging from 0 to 2π . The map h 	−→
(h(0), h h(0)−1) is a diffeomorphism between LG and G × %G where %G is the group
of such loops that start at the identity. On G × %G the group multiplication is a semi-direct
product:

(A, γ )(B, η) = (AB, γ AηA−1) A,B ∈ G γ, η ∈ %G

so γ (0) = η(0) = 1. The Lie algebra of LG, Lg, is the space of smooth S1 −→ g mappings,
the Lie algebra of %G, %g, is the space of such loops that start at the origin.

The Kac–Moody algebras are the central extensions of Lg; they are denoted by ĝ [23].
Since G is simple the extension by R is unique up to a scalar factor and the corresponding
cocycle is c(J1, J2) = 〈J ′

1, J2〉, where

〈J1, J2〉 =
∫ 2π

0
Tr J1(x)J2(x)

dx

2π
(2)

is a non-degenerate form on Lg. Note that the cocycle c : Lg × Lg −→ R is degenerate, its
kernel consists of precisely the constant elements but if it is restricted to %g × %g it will turn
non-degenerate as the constant elements in %g are zero.
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While considering the coadjoint orbits of the centrally extended loop groups it is clearly
enough to deal with the action of LG and Lg on ĝ as we have a central extension at hand. Note
that we have not touched on the delicate issue of central extensions on the group level and we
will continue to ignore this subtlety. It is easy to check that the adjoint action of K ∈ Lg and
h ∈ LG on ĝ is

K · (J, k) = ([K, J ], c(K, J ))

h · (J, k) = (hJh−1, k − 〈h−1h′, J 〉).
The coadjoint action is also considered on ĝ after identifying the dual of Lg with Lg by the (2)
scalar product and turns out to be

h · (J, k) = (hJh−1 + kh′h−1, k)

where ‘·’ means the coadjoint action. In the first component we have the symmetry
transformation (1) of the WZNW model and the central term is invariant, so we will think
of the coadjoint action of the centrally extended loop group as an action of LG on Lg with a
given k fixed. The corresponding orbit will be referred to as the Kac–Moody coadjoint orbit
or simply as the coadjoint orbit.

Let us consider the quasiperiodic-group-valued field of the WZNW model with M ∈ G

monodromy for analysing the coadjoint orbits. The association of J to g via the J = kg′g−1

definition is one-to-one between the space of quasiperiodic-group-valued fields and Lg if we
add the g(0) = 1 initial condition which means that M = g(2π). Note that this initial
condition is the reason for including the constant term in (1). To a given J (x) corresponds the
path-ordered g(x) = P exp(

∫ x

0 J (y) dy). If the transformation of J is J 	−→ hJh−1 +kh′h−1

then the associated g transforms as g 	−→ hgh(0)−1 which is the symmetry transformation
of the WZNW model. The monodromy also changes to M 	−→ h(0)Mh(0)−1. This means
that if two J are on the same orbit then the corresponding monodromies are conjugated in G.
The alternative approach is to take two elements in Lg, J1 and J2, and let the corresponding
quasiperiodic fields and monodromies be g1, g2 and M1 and M2. Let us assume that the
monodromies are conjugated by an A ∈ G, M2 = AM1A

−1, then g2Ag
−1
1 is periodic and

takes J1 to J2 which means they are on the same orbit.
To summarize the above considerations: there is an equivariant correspondence between

the conjugacy classes of G and the Kac–Moody coadjoint orbits, which fact greatly simplifies
the study of the latter. For example, it is fairly straightforward to determine the isotropy
subgroup, HJ ⊂ LG, of a given J because if h leaves J fixed then it must be true that
g = hgh(0)−1 and h(0) commutes with the corresponding monodromy, which means that h is
such that h = gAg−1 where h(0) = A is any element which commutes with M . This implies
that the map h 	−→ h(0) is an isomorphism from HJ to the commutant subgroup of M in G,
hence we will think of HJ as a subgroup of G.

In general, any orbit can be realized as a homogeneous manifold, which gives in our case
the realization OJ = LG/HJ = (G × %G)/HJ where OJ is the coadjoint orbit of J . As HJ

can be thought of as a subgroup of G one might suspect that the factorization only takes place
in the first (G) component. To make this idea precise consider the map

π : OJ −→ G/HJ

h·J 	−→ [h(0)]
(3)

where ‘·’ is the coadjoint action and [h(0)] is the class of h(0) in G/HJ . This map is easily
seen to be well defined. It is clear that π−1([A]) is nothing other then those elements in OJ

whose monodromies are AMA−1 and that on this set %G acts freely, for if the monodromy of
g is AMA−1 and γ ∈ %G then the monodromy of γgγ (0)−1 = γg is also AMA−1. Local
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trivializability can also be established. Summarizing, the coadjoint orbits of Kac–Moody
groups are principal %G-bundles over G/HJ , hence all the infinite-dimensional subtleties are
isolated in the fibre, which is the same for all orbits, and the orbit-specific features are captured
in the finite-dimensional homogeneous manifold G/HJ .

Let us elaborate a little on the important special case when the monodromy M has a
logarithm in g, i.e. it is of the form M = exp(X) for some X ∈ g. Having such an M at
hand, an obvious choice for the quasiperiodic field with this monodromy is g(x) = M

x
2π . To

this g corresponds the constant current J = 1
2π X, which shows that in this special case the

orbit contains a constant representative, which is not true in general for non-compact groups.
Put another way, it is quite obvious that if an orbit contains a constant representative then the
corresponding monodromy has a logarithm.

The isotropy subgroup of a constant J = 1
2π X consists of only those constant elements in

LGwhich commute withM , which is the same as the isotropy subgroup ofX, HX, with respect
to the adjoint action of G on g. Recall that the (co)adjoint orbit of X, OX, can be identified
with G/HX which makes it clear that in this case the OJ orbit is a principal %G-bundle over
OX:

OJ −→ OX

h·J 	−→ h(0)Xh(0)−1

and the map

OJ −→ OX × %G

h·J 	−→ (h(0)Xh(0)−1, h h(0)−1)

trivializes OJ . Note that the (3) bundle can be trivialized in any case over G/HJ , not only
when M possesses a logarithm, but in general the trivializing map is more complicated.

The chiral energy in the WZNW model is of the usual form:

E(J ) = 1

2
〈J, J 〉 = 1

2

∫ 2π

0
Tr J 2(x)

dx

2π
(4)

whose critical points on the orbit are the constant elements, because if δJ = [K, J ] + kK ′ for
a K ∈ Lg then

δE = k

∫ 2π

0
Tr J (x)K ′(x)

dx

2π
(5)

which is obviously zero only for any K if J is constant. This can also be seen by noting that
E(J ) generates the rigid rotations of the circle and the critical points should be invariant, hence
they must be constant. The critical points are minima of the energy only if the second variation
is positive semi-definite, which turns out to be at a critical point evaluated on two elements
K1,K2 ∈ Lg:

δ2δ1E = k

∫ 2π

0
Tr
(
J [K ′

1(x),K2(x)] + kK ′
1(x)K

′
2(x)

) dx

2π
(6)

which is symmetric in K1 and K2 for a constant J , as it should be. The positive semi-
definiteness of this quadratic form is equivalent to the positive semi-definiteness of the operator

−k2

(
d

dx

)2

+ kadJ
d

dx

on Lg.
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4. SL(n,R) WZNW model and reduction

Systems with W -symmetry can be obtained from WZNW models based on maximally non-
compact Lie groups by imposing appropriate constraints. In general, an sl(2,R) embedding
is needed in the Lie algebra in order to define the constraints but we will only deal with the
principal embedding in the SL(n,R) case, from which generalization to other groups and
embeddings is straightforward. From now on J/k is denoted by J (assuming that k �= 0) and
k will not appear explicitly in the formulae. The constraint is the fixing of certain components
of the current:

Jα(x) =
{

1 if α ∈ -−
0 if α ∈ .− \ -−

if the Cartan basis is chosen in g and where .− is the set of negative roots and -− is the set
of simple negative roots.

These constraints mean that the form of J is restricted in the following way:

J =



∗ ∗ . . . . ∗
1 ∗ ∗ .

0 1 ∗ ∗ .

. 0 1 .

. . .

. . ∗ .

0 . . . 0 1 ∗


.

It is easy to show that these are first-class constraints in the sense of Dirac and generate
gauge transformations which are precisely the transformations generated by the components
of the current corresponding to the positive roots. One possible gauge fixing is the Wronsky
gauge in which the current takes the form

J =



0 W2 W3 W4 . . Wn

1 0 0 . . . 0
0 1 0 .

. 0 1 .

. . .

. . 0 .

0 . . . 0 1 0


. (7)

One can think of the above form as the constrained form of the current by second-class
constraints and can calculate the Poisson bracket of the reduced W2, . . . ,Wn fields in three
different ways. As gauge-invariant quantities one can use the original Poisson bracket, or
as fields left from second-class constraints one can adopt the Dirac formalism. The third
possibility is based on the fact that the Poisson bracket taken with a Wm field is the same
as the infinitesimal W -transformation generated by it and the brackets can be read off from
the transformation properties. The bracket of the W2 = L energy–momentum tensor with
itself gives the Virasoro algebra, and suitable combinations of the other Wm fields transform
as primary fields of weight m under conformal transformations. The bracket of two Wm

fields (m �= 2) gives nonlinear expressions in the others. This Poisson algebra is called the
Wn-algebra.

The energy–momentum tensor generates the conformal transformations out of which the
rigid rotations are generated by the chiral energy E = L0 = ∫ 2π

0 L(x) dx
2π , hence the critical

points of the energy on a W -leaf are those points which are invariant under rigid rotations, i.e.
all Wm fields must be constant, which means that this property has survived the reduction.
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The constraint on the current also gives restrictions on the g field. For the current to have
the gauge-fixed (7) form, g must take the form

g =



ψ(n−1)

...

ψ′

ψ


(8)

where ψ : R −→ R
n is a quasiperiodic row vector with M monodromy and ψ(n−1) is the

(n − 1)th derivative. The det g = 1 and g(0) = 1 conditions mean further restrictions on ψ
and it follows from the J = g′g−1 relation that its components are the linearly independent
solutions of the

ψ(n) =
n−1∑
m=2

Wmψ
(n−m) (9)

nth-order linear differential equation which is the field equation of the reduced theory in one
chirality. Note that in the case n = 2 equation (9) turns into the Hill equation which was used
in [17] for analysing the coadjoint orbits of the Virasoro algebra. Also note that if ψ in (8) is
multiplied by any periodic function r(x) then det g picks up a factor of rn(x), which shows
that the length of ψ is irrelevant, it can be thought of as a quasiperiodic curve in RPn−1 or
Sn−1, and the det g �= 0 condition is a certain non-degeneracy condition which makes it clear
that the symplectic leaf classification problem is equivalent to the determination of homotopy
types of quasiperiodic non-degenerate curves on projective space or the sphere. This approach
is followed in [6, 9, 10].

The Kac–Moody transformations which preserve the gauge-fixed form of the current, or
equivalently the (8) constrained form of g, are also symmetries of the reduced model: these are
the W -transformations. To give an explicit description of them let us consider the constrained
g field in the form of (8). It is not difficult to show that this form is preserved by an h ∈ LG

Kac–Moody transformation

h =



an

...

a2

a1


(10)

only if the am : S1 −→ R
n row vectors satisfy the am+1 = a′

m + amJ , m = 1 . . . n − 1
recursion relation whose solution is

am+1(x) = a1(x)

(
d

dx
+ J (x)

)m
where differentiation acts on the left. If the current is not in the gauge-fixed form then the
expression (10) gives those transformations which bring it to the gauge. As a consequence of
the recursion relation, any component of h can be expressed in terms of a1; the only restriction
on it is the det h = 1 condition which makes it possible to express the last component of a1

with the others on the infinitesimal (Lie algebra) level. The next-to-last component generates
the conformal transformation, the others the W -transformations.
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Based on the above reduction procedure it is not hard to find the number of independent
vectorfields that leave all the Wm fields fixed by the corresponding W -transformation. Because
if it leaves them fixed one can neglect the constraint hypersurface and the answer is the
dimension of the isotropy subgroup HJ ⊂ G of J . Attacking this problem by brute-
force methods would involve the determination of the number of independent solutions of
complicated differential equations subject to periodic boundary conditions, which is, in general,
cumbersome. This direct method was used in [18] for determining the possible dimensions in
the case of the Virasoro algebra.

To list all classical models with such a W -symmetry one has to classify the symplectic
leaves of the nonlinear Poisson structure of the Wm fields. These can be obtained, just as in
the finite-dimensional cases [21, 22]: the symplectic leaves are contained in the intersection
of the coadjoint orbit of the original symmetry algebra, which is, of course, the SL(n,R)

Kac–Moody algebra, and the hypersurface of the second-class constraints. More precisely,
as a symplectic leaf is connected by definition, the connected components of the intersection
have to be determined.

5. SL(2,R) Kac–Moody and Virasoro algebra

The only component of the current that survives the reduction is the W2 = L energy–
momentum tensor which means that applying our method in this case will result in the
classification of the coadjoint orbits of the Virasoro algebra and should reproduce the well
known results [6, 17–19]. In [17] the authors classified the Virasoro orbits through the study
of the Liouville (or Hill) equation, hence our method will be a constructive way of producing
the conformally inequivalent solutions of the Liouville (or Hill) equation.

It is also important to note that since π1(SL(2,R)) = Z, which is given by the winding
number of the second row of the SL(2,R) matrix, every Kac–Moody orbit consists of Z

connected components. If a J current is given on a specific component of an orbit then to take
it to other components of the same orbit one can apply, for example, the

Tn(x) =
(

cos(nx) − sin(nx)
sin(nx) cos(nx)

)
Kac–Moody transformation which has winding number n, where n is any integer. As the
symplectic leaves are connected, one has to determine the connected components of the
intersection of the Kac–Moody orbit and the constraint hypersurface. It will turn out that
the intersection of the constraint and each component of the Kac–Moody orbit is either empty
or connected. This means that the Virasoro orbits can be labelled by the conjugacy class of
the monodromy matrix and by those n which determine a non-empty intersection. The issue
of the existence of the intersection will be dealt with in the following way: if a current is given
on a specific component of a Kac–Moody orbit we will try to transform it to the desired

(0 L

1 0

)
form by a Kac–Moody transformation that has winding number zero in order to stay on the
same component. If this can be done, the resulting L will immediately be a representative of
the Virasoro orbit; if it cannot be done then the component in question has no intersection with
the constraint hypersurface.

Before going into further details we note one qualitative remark: according to section 4
the energy–momentum tensor can be left fixed only by 1 or 3 generators as the group SL(2,R)

has only 1- and 3-dimensional isotropy subgroups, so in the realization Diff(S1)/H of the
Virasoro orbits the dimension of H can only be 1 or 3, as is well known. In the detailed
analysis we give the vectorfields for each representative of the Virasoro orbit which leaves it
fixed under the coadjoint Virasoro action.



4820 Z Bajnok and D Nógrádi

After imposing the constraint and the det g = 1 condition only one free functionφ remains
in g:

g =
((

sin φ√
φ′

)′ (
cosφ√

φ′

)′
sin φ√
φ′

cosφ√
φ′

)
where, of course, φ′ > 0. The g(0) = 1 initial condition and quasiperiodicity of g implies that

φ(0) = 0 eiφ(2π) = d + ic√
d2 + c2

φ′(0) = 1 φ′(2π) = 1

d2 + c2

φ′′(0) = 0 φ′′(2π) = −2
cd + ab

(d2 + c2)2

(11)

where M =
(
a b

c d

)
is the monodromy matrix. The condition on φ(2π) and the fact that φ

is monotonically increasing implies that one can find an integer N � 0 such that

φ(2π) = α + 2πN (12)

where eiα = d+ic√
d2+c2

and 0 < α � 2π . It does not make sense to talk about the winding number
of φ as it is only quasiperiodic, but the N � 0 integer just defined describes its winding in a
certain sense. More precisely, let J1 and J2 be two gauge-fixed elements on the same Kac–
Moody orbit but not necessarily on the same component. Their monodromies are conjugated
by an A ∈ SL(2,R), M2 = AM1A

−1. Let g1 and g2 be the quasiperiodic fields associated
with them and since they are gauge fixed they can be expressed with φ1 and φ2 functions whose
invariants are denoted by N1 and N2. Then J1 and J2 are on the same component if and only if
N1 = N2. One has only to prove that the winding number of h = g2Ag

−1
1 : S1 −→ SL(2,R)

which takes J1 to J2 is zero if and only if N1 = N2, and this is not difficult. So the N invariant
describes on which Kac–Moody component is the J relative to a prescribed representative.

The space of φ functions with fixed monodromy and N invariant, subject to the
conditions (11), is clearly connected so if the monodromy is fixed the intersection of the
constraint hypersurface and each component may consist of maximum one component.
Besides, if the monodromy is changed within its conjugacy class then in those components
where there was an intersection it will continue to be so, which means that the intersection of
the constraint hypersurface and a Kac–Moody component is either connected or empty. It also
turns out from this analysis that since N � 0 only those Kac–Moody components can have an
intersection with the constraint that are ‘above’ the prescribed representative, which fact will
be transparent in each specific case in the detailed analysis.

In each gauge-fixed current the total degrees of freedom is in the corresponding φ. The
energy–momentum tensor can be expressed as

L = −φ′2 + 1
2S(φ)

where S(φ) = 3
2
φ′′2

φ′2 − φ′′′
φ′ is the Schwarzian derivative. We have brought any L to the above

form which is quite remarkable as if it were true that φ(x + 2π) = φ(x) + 2π then this
formula would mean that any L is on the orbit of −1 which is, of course, not true because the
complicated (11) formulae hold for φ(x + 2π) instead of the previous one.

To classify the Kac–Moody and Virasoro orbits one has to present a complete list
of conjugacy classes. There are four distinct types of these, depending on the isotropy
subgroup H :
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• Elliptic classes: those monodromies belong here for which |Tr M| < 2,

H =
{(

cos(t) − sin(t)
sin(t) cos(t)

)∣∣∣∣ t ∈ (0, 2π ]

}
representatives:

M =
(

cos(2πω) − sin(2πω)
sin(2πω) cos(2πω)

)
ω ∈ (0, 1) ω �= 1

2 .

• Hyperbolic classes: those monodromies belong here for which |Tr M| > 2,

H =
{(

t 0
0 t−1

)∣∣∣∣ t ∈ R
∗
}

representatives:

M = ±
(

e2πb 0
0 e−2πb

)
b > 0.

• Parabolic classes: those monodromies belong here for which |Tr M| = 2, but M �= ±1,

H =
{(±1 0

t ±1

)∣∣∣∣ t ∈ R

}
representatives:

M = ±
(

1 0
q 1

)
q = ±1.

• Exceptional classes: H = SL(2,R); representatives: M = ±1; these can be obtained as
the ω −→ 0 and ω −→ 1

2 limiting cases of the elliptic cases but the isotropy subgroups
are larger.

According to section 4, for a given M one has to find a g then the corresponding J current
has to be studied to see whether it can be transformed to the gauge-fixed form or not. The
most straightforward case is when M possesses a logarithm in sl(2,R). When this occurs the
simplest choice is g(x) = M

x
2π , to which corresponds the constant current J0 = 1

2π logM .
From the above-listed representatives the elliptic monodromies have logarithms and from the
others in the ‘+’ case M , and in the ‘−’ case −M , has a logarithm and in the latter case a
possible choice for g is g(x) = T 1

2
(x)(−M)

x
2π , to which corresponds the non-constant current

J 1
2

= T 1
2
J0T− 1

2
+ T ′

1
2
T− 1

2
.

Recall that T 1
2
(x) is the matrix of rotation by x

2 .
From J0 and J 1

2
we get a representative on each Kac–Moody component by applying Tn

to J0 and (except for the elliptic case) to J 1
2
. To simplify notation, from now on let n be a

half-integer and

J0 =
(

j1 j2 − j3

j2 + j3 −j1

)
the constant element. We obtain a representative on each component of the Kac–Moody orbits
by setting

Jn = TnJ0T−n + T ′
nT−n

= (n + j3)

(
0 −1
1 0

)
+ j1

(
cos(2nx) sin(2nx)
sin(2nx) − cos(2nx)

)
+ j2

(− sin(2nx) cos(2nx)
cos(2nx) sin(2nx)

)
(13)



4822 Z Bajnok and D Nógrádi

which is also periodic for half-integer n, as it should be.
To summarize, the Jn in equation (13) for integer n is a representative of the nth component

of the Kac–Moody orbit corresponding to M = e2πJ0 monodromy, and for half-integer n it
is a representative of the (n − 1

2 )th component of the Kac–Moody orbit corresponding to
M = −e2πJ0 monodromy. As a reference, let J0 be on the zeroth component.

To get the Virasoro representatives, Jn has to be transformed to the gauge-fixed form with
an h ∈ LSL(2,R) with zero winding number. Obviously, the winding number of

h =
(
R−1 (1 + 1

n
R−2)R′

0 R

)
: S1 −→ SL(2,R)

is zero and is easily checked to bring Jn to the desired form as it is in the form of (10) (and has
no singularity when n = 0) and

R(x) = 1√
n + j3 + j1 sin(2nx) + j2 cos(2nx)

.

This is only true, of course, if

n + j3 + j1 sin(2nx) + j2 cos(2nx) > 0 (14)

which has to be checked in each case. If this inequality holds, the Virasoro representative turns
out to be, after straightforward calculations,

L = C + 2n(n2 + C)R2 + 3n2(C − n2 − 2nj3)R
4

where C = 1
2 Tr(J0)

2 = j 2
1 + j 2

2 − j 2
3 . This is a surprisingly dense form if we take into account

that it contains every possible case and moreover it looks very similar to the representatives
given in [17] obtained by very different methods. If the (14) inequality does not hold then
conjugating J0 by a constant element might change it in such a way that with the new j1, j2

and j3 the inequality holds. This corresponds to choosing a different representative in the
conjugacy class of the monodromy. As we will see, this occurs in the hyperbolic case. In
those cases when this cannot be achieved it is quite easy to show through analysis of the
det h = 1 equation, where h is of the (10) form, that there is no transformation that brings Jn
to the gauge-fixed form, which means that the corresponding Kac–Moody component has no
intersection with the constraint hypersurface.

For the sake of completeness we give the vectorfields for each representative of the Virasoro
orbit which leave it fixed under the coadjoint Virasoro action. The key observation, noted in
section 4, is that the (2, 1) component of a gauge preserving Kac–Moody transformation
generates the conformal transformations, which means that for determining the isotropy
vectorfields one has to look for the (2, 1) component of those infinitesimal Kac–Moody
transformations which leave a particular gauge-fixed current invariant. A general Virasoro
representative was obtained from a constant J0 by applying first Tn and then h to bring it
to the gauge-fixed form, so those elements which leave them invariant are obviously of the
form hTnAT

−1
n h−1 ∈ LSL(2,R), where A ∈ SL(2,R) commutes with the monodromy

corresponding to J0. Hence, the isotropy vectorfields are given by the (2, 1) component of

hTnYT
−1
n h−1 ∈ Lsl(2,R), where Y =

(
y1 y2 − y3

y2 + y3 −y1

)
is any element of the Lie algebra

of the commutant subgroup of M . The (2, 1) component turns out to be

V = y3 + y2 cos(2nx) + y1 sin(2nx)

n + j3 + j2 cos(2nx) + j1 sin(2nx)
which can be directly related to the results of [20]. Note that in any case when L is non-
constant and periodic with period π

n
, a discrete Zn subgroup must appear in the isotropy

subgroup corresponding to rigid discrete rotations of the circle.
The case-by-case analysis proceeds as follows:



Geometry of W -algebras from the affine Lie algebra point of view 4823

• Elliptic orbits: n is an integer here and R(x) = 1√
n+ω

where ω ∈ (0, 1) and ω �= 1
2

so n � 0. The Virasoro representatives and stabilizing vectorfield (up to an irrelevant
normalization factor) are

L = −(n + ω)2 V = 1.

The V vectorfield generates an S1.
• Hyperbolic orbits: n is a half-integer here and R(x) = 1√

n+b sin(2nx)
where b > 0. The

expression under the square root can be negative for large b but if J0 is conjugated by
(1 0
b 1

)
then from the new Jn one obtains R(x) = 1√

n+b2+b2 cos(2nx)+b sin(2nx)
which is well defined,

where n � 0. The Virasoro representatives and stabilizing vectorfield are

L = b2 +
2n(n2 + b2)

n + b2 + b2 cos(2nx) + b sin(2nx)
+

3n2(b2 − 2b2n − n2)

(n + b2 + b2 cos(2nx) + b sin(2nx))2

and

V = b + sin(2nx) + b cos(2nx)

n + b2 + b sin(2nx) + b2 cos(2nx)

which for n = 0 generates an S1 and for n �= 0 a one-parameter subgroup isomorphic
to R.

• Parabolic orbits: n is a half-integer here and R(x) = 1√
n+ q

2π cos2(nx)
. If n = 0 only q = 1

is allowed, otherwise n > 0 and q = ±1 is arbitrary. The Virasoro representatives and
stabilizing vectorfields are

L = n3

(
2

n + q

4π (1 + cos(2nx))
− 3(n + q

2π )

(n + q

4π (1 + cos(2nx)))2

)
V = 1 + cos(2nx)

n + q

4π (1 + cos(2nx))

which again generates an S1 for n = 0 and a subgroup isomorphic to R for n �= 0. The
above form of L explicitly shows that if n = 0 then only one of the q are allowed because
if it were not so then two distinct monodromies would correspond to the same L = 0.

• Exceptional orbits: n > 0 and is a half-integer here and L can be obtained from the
elliptic case as the ω −→ 0 limit, but the stabilizing subgroup is larger. The Virasoro
representatives and stabilizing vectorfields are

L = −n2 V = 1, sin(2nx), cos(2nx).

These V s generate a 2n-fold ‘embedding’ of SL(2,R) into Diff(S1).

It was noted in section 4 that the energy can have critical points only on those orbits which
contain a constant representative. To study the stability of the critical points let us spell out
the (6) second variation allowing now only such K that preserve the gauge. Having a constant
L at hand, the form of these on the Lie algebra level are

K = 1
2

(
ε′ εL − ε′′

2ε −ε′

)
according to the infinitesimal version of formula (10) where ε : S1 −→ R is some function.
Calculation of the diagonal element of the (6) second variation gives

δδE = 2
∫ 2π

0

(
Lε′2 +

1

4
ε′′2
)

dx

2π

which is easily seen to be non-negative for any ε if and only if L � − 1
4 .
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6. SL(3,R) Kac–Moody and Zamolodchikov algebra

In the SL(3,R) WZNW model two fields survive the reduction, the W2 = L energy–
momentum tensor and the W3 = W field. There are two free functions in the infinitesimal
version of the (10) gauge preserving transformations out of which the second component of
a1 generates the conformal and the first component the W -transformations. Applying such an
infinitesimal transformation to a gauge-fixed current one can read off the Poisson brackets [1]:

{L(x), L(y)} = L′(x)δ(x − y) − 2L(x)δ′(x − y) − 2δ′′′(x − y)

{L(x),W(y)} = W ′(x)δ(x − y) + 3W(x)δ′(x − y)

−(L(x)δ(x − y))′′ + δ′′′′(x − y)

{W(x),W(y)} = (
2
3L

′(x)L(x) + W ′′(x) − 2
3L

′′′) δ(x − y)

+
(

2
3L

2(x) + 2W ′(x) − 2L′′(x)
)
δ′(x − y)

−2L′(x)δ′′(x − y) − 4
3L(x)δ

′′′(x − y) + 2
3δ

′′′′′(x − y)

where the W field is not primary, but if gauge fixing is changed from the Wronskian to the
HW one [1, 2], which is essentially a shift W̃ = W − 1

2L
′, then the Poisson brackets for the

new fields show that W̃ is a primary field with conformal weight 3 and that its bracket with
itself gives polynomial terms in the energy–momentum tensor, and happens to be identical to
the Zamolodchikov algebra.

As the fundamental group of SL(3,R) is Z2 each Kac–Moody orbit consists of two
connected components. The

Tn(x) =
( cos(nx) − sin(nx) 0

sin(nx) cos(nx) 0
0 0 1

)
(15)

transformation determines the non-trivial element in π1(SL(3,R)) if n is odd. This means
that for n odd, Tn shifts between the two components and for n even, Tn preserves them. The
interesting consequence of this is that on some Kac–Moody orbits and on the corresponding
W -leaves there will be infinitely many critical points of the energy but at most one will be a
minimum.

The exploration of the W -leaves proceeds in an analogous way as in the previous section.
Since the fundamental group has two elements, there correspond at least two symplectic leaves
to each monodromy matrix, but it is known from the context of homotopy types of non-
degenerate curves on projective space or sphere that in some cases this classification is not
complete as sometimes the intersection of the constraint and one of the two components of the
Kac–Moody orbits consists of two components, which will mean that to such a monodromy
three leaves correspond [6, 9, 10].

A complete list of conjugacy classes with the isotropy subgroups follows. Note that the
isotropy subgroups have dimension 2, 4 or 8 so an (L,W) pair can be left fixed by only 2, 4
or 8 linearly independent W -transformations.

• Hyperbolic classes: the diagonalizable matrices with three distinct, real eigenvalues
belong here,

H =
{(

t 0 0
0 r 0
0 0 (tr)−1

)∣∣∣∣∣ t, r �= 0

}
� R

∗ × R
∗

representatives:

M =
(±e2πa 0 0

0 ±e2πb 0
0 0 e−2π(a+b)

)
.
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• Degenerate hyperbolic classes: the diagonalizable matrices with two distinct, real
eigenvalues belong here,

H =
{(

t r 0
u v 0
0 0 (tv − ru)−1

)∣∣∣∣∣ tv − ru �= 0

}
� GL(2,R)

representatives:

M =
(±e2πb 0 0

0 ±e2πb 0
0 0 e−4πb

)
b �= 0 in the ‘+’ case.

• Elliptic classes: those matrices belong here which are diagonalizable over the complex
numbers with one real and a complex and its conjugate eigenvalue,

H =
{(

t −r 0
r t 0
0 0 (t2 + r2)−1

)∣∣∣∣∣ t2 + r2 �= 0

}
� C

∗

representatives:

M =
( e2πb cos(2πω) −e2πb sin(2πω) 0

e2πb sin(2πω) e2πb cos(2πω) 0
0 0 e−4πb

)
ω ∈ (0, 1) ω �= 1

2 .

• 1. parabolic class, matrices with one degenerate Jordan block belong here,

H =
{(

t r 0
0 t 0
0 0 t−2

)∣∣∣∣∣ t �= 0

}
� R × R

∗

representatives:

M =
(±e2πb 1 0

0 ±e2πb 0
0 0 e−4πb

)
b �= 0 in the ‘+’ case.

• 2. parabolic class,

H =
{(

t r u

0 t 0
0 v t−2

)∣∣∣∣∣ t �= 0

}
� R

3 × R
∗

representative:

M =
( 1 1 0

0 1 0
0 0 1

)
.

• 3. parabolic class,

H =
{( 1 t r

0 1 t

0 0 1

)∣∣∣∣∣ t, r ∈ R

}
� R

2

representative:

M =
( 1 1 0

0 1 1
0 0 1

)
.

• Exceptional class,

H = SL(3,R) representative: M = 1.
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At the hyperbolic, degenerate hyperbolic and the 1. parabolic class the signs are either
both positive or both negative.

The classification of W -leaves by the fundamental group is complete in the ‘−’ version
of the hyperbolic, the degenerate hyperbolic, and the 2. parabolic case. In the others the
constraint intersects one of the two Kac–Moody components in two piece; more concretely, in
the exceptional case n = 1 corresponds to a separate leaf, while all other odd n correspond to
a second, and all even n to a third leaf. In the remaining cases n = 0 corresponds to a separate
leaf, all other even n to a second and all odd n to a third leaf [6, 9].

The given representatives possess logarithms except for the 1. parabolic and the ‘−’
version of the hyperbolic classes. The latter case was analysed in [2] and the authors did not
find constant L and W representatives for the corresponding leaf, which is not surprising, for
as we noted in section 3, if a monodromy does not have a logarithm then the corresponding
orbit cannot have a constant representative.

In the ‘−’ cases the trick used for SL(2,R) is adopted in the upper left block: i.e. take the
opposite sign of the upper left 2 × 2 block of M , call it M− which possesses a logarithm and

then the monodromy of g(x) = T 1
2
(x)M

x
2π− will be M where T 1

2
(x) is the matrix of rotation

by x
2 in the upper left block. On the resulting matrices the Tn matrix must be applied, but

note again that for n even we stay in the original component. The resulting matrices should
be transformed into the gauge-fixed form by a Kac–Moody transformation that determines the
trivial element of Z2.

Let us analyse the stability of the critical points on the W -leaves which is important
for determining the classical HW states. Substituting the gauge preserving infinitesimal
transformations into the (6) diagonal element of the second variation of the energy gives

δδE =
∫ 2π

0
( ε′

1 ε′
2 )

 2
3

(
L − d2

dx2

)2
3W −

(
L − d2

dx2

)
d

dx

3W +
(
L − d2

dx2

)
d

dx 2
(
L − d2

dx2

)
( ε′

1
ε′

2

)
dx

2π

supposing thatL andW are constant, where ε1 and ε2 are the functions generating the conformal
and W -transformations. This quadratic form is non-negative for any ε1 and ε2 if and only if

(L + 1)2(4L + 1) � 27W 2

holds for the constant representatives, which shows that L � − 1
4 is necessary just as in the

pure Virasoro case.
The straightforward calculation gives in the individual cases the following, where we

have not bothered writing out explicitly the non-constant representatives as they are quite
complicated and have no transparent physical meaning:

• Hyperbolic orbits. In the n = 0 and ‘+’ case one has constant representatives which can
be obtained by constant Kac–Moody transformations:

L = a2 + ab + b2 W = −ab(a + b)

which are all minima of the energy. If n �= 0 there are only non-constant L and W

representatives.
• Degenerate hyperbolic orbits. In this case n is a half-integer, the classification is complete

by the fundamental group and we have constant representatives for the W -leaves:

L = 3b2 − n2 W = −2b(b2 + n2).

Note again that these elements describe four different leaves, according to whether n �= 0
is an integer or half-integer (the monodromies are different) and whether n is even or odd
in case it is an integer, or n− 1

2 is even or odd in case n is a half-integer (same monodromy
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but different Kac–Moody component). Now any leaf possesses infinitely many critical
points but only in the ‘−’ case will one find a minimum and it only happens if n = 1

2
and b arbitrary and the minimum is degenerate. Note that these classical HW states are
GL(2,R) invariant so they are good candidates for a true vacuum in CFT.

• Elliptic orbits. Here n is an integer and one obtains constant representatives for any
W -leaf:

L = 3b2 − (ω + n)2 W = −2b(b2 + (ω + n)2) ω ∈ (0, 1) ω �= 1
2 . (16)

In these cases the classification by the fundamental group is not complete, the constraint
intersects the component corresponding to even n into two pieces, but the W -leaf
corresponding to odd n is connected and the (16) representatives determine the same
W -leaf for all odd n which means that on these leaves the energy has infinitely many
critical points. The critical points are minima only if n = 0 and |ω| < 1

2 and b arbitrary.
• 1. parabolic orbits. These have constant representatives for n = 0 and they are given by

L = 3b2 W = −2b3

which are minima of the energy for arbitrary b.
• 2. parabolic orbits. None of these orbits have constant representatives.
• 3. parabolic orbit. The constant representative is

L = 0 W = 0

which is a minimum of the energy.
• Exceptional orbit. The leaf corresponding to this orbit has infinitely many constant

representatives,

L = −n2 W = 0

where n �= 0 is an integer, but none of these are minima of the energy.

Note again that a constant representative with non-negative second variation of the energy
is a classical HW state. One hopes to construct a consistent HW representation space on these
leaves on which the quantized version of the W -algebra will act in CFT. The uniqueness of the
vacuum in CFT is an important issue and we have established that if there is a critical point of
the energy on a leaf then at most one will give rise to a vacuum as at most one of the possibly
many critical points can be a stable minimum. Those leaves which do not contain critical
points (i.e. on which one cannot find a constant representative) are physically less important
as one cannot associate a HW-type representation of the W -algebra to these.

7. Conclusions and outlook

We have analysed in this paper the classical geometry of W -algebras in the context of reduced
SL(n,R) WZNW models. We split the WZNW field as

g(x, t) = g+(x+)g−(x−)

and concentrated on one chiral half of the original WZNW theory only. As a consequence of
the splitting, the chiral theory inherited a global G-symmetry g+ → g+h , h ∈ G. Both the
unconstrained and constrained currents are invariant under this global symmetry, since

J+ = (∂+g)g
−1

that is the fields W2, . . . ,Wn are SL(n,R) invariant. We fixed this gauge symmetry, however,
by demanding g(0) = e and establishing a one-to-one correspondence between the current J+

and the group-valued field g+. In the reduced case this means that the fields W2, . . . ,Wn can
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be determined from the last row of g, that is from a non-degenerate curve in R
n, as we have

seen. If we had not fixed the gauge we would have the global SL(n,R) gauge symmetry. The
geometry of this symmetry was discussed in detail in [28]. Let us summarize their results.
This symmetry acts naturally on the space of non-degenerate curves and the generators of
the classical W -algebra, that is the components of the constrained currents W2, . . . ,Wn are
invariant. Since they can be built up from the non-degenerate curve as differential polynomials
which are clearly invariant with respect to the gauge symmetry they can be interpreted as ‘affine’
invariants. It was also shown that they are the only invariants and determine the curve modulo
gauge transformations. The Virasoro generator is a second-order invariant which is called
‘affine’ curvature, the next W -generator can be interpreted as ‘affine’ torsion, etc.

Here we have concentrated on the classification of W -leaves and the issue of classical HW
states in one chiral half. We can extend our results for the other chiral half of the theory since
analogous formulae hold for them. Putting the two chiral halves together, the solutions of the
reduced WZNW models, namely the Toda models, can be obtained. Our classification of the
leaves leads to a classification of the W -inequivalent Toda solutions, as was described in detail
in [17] for the global Liouville equation. Our method, in principle, is able to give explicit
representatives on each leaf, which fact was put into practice in the search for classical HW-
type representations. All these considerations were carried out for n = 2 and 3, corresponding
to the Virasoro and Zamolodchikov algebra respectively. We have found that there is at most
one classical HW state on any W -leaf and in the Zamolodchikov algebra case also determined
the SL(2,R) (GL(2,R) in fact) invariant HW states which are the best candidates for a true
vacuum in CFT.

A very interesting and delicate question is how the classical representations are related to
the quantum HW representations. One possible approach is to take the classical equations of
motion and try to quantize them. This idea was used in [2,3,5] and they found that consistent
quantization results in W -minimal models, where the classical Toda field corresponds to the
simplest non-trivial completely degenerate representation of the quantum W -algebra. Later,
this was extended by taking higher-dimensional representations of the reduced WZNW model
to obtain other representations in the quantum case in [8]. It is not clear, however, how these
representations are related to the symplectic leaves of the classical W -algebra even in the
simplest Virasoro case, where only a conjecture from Witten gives some hint [18]. A proper
description would be the geometric quantization of the leaves classified in this paper. This is
a difficult problem and is unsolved even in the finite W -algebra case except for the simplest
situation [7].
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